Davison Community Schools
 ADVISORY CURRICULUM COUNCIL

Phase II, February 13, 2017

Bob Konzman, Matt Lobban

6th grade CI - Math

Course Essential Questions:

- How does mathematics help us in finding patterns and relationships in the real-world?
- How can we use mathematics to solve real-world problems?

Unit 1: Counting/Place Value
Essential Questions:

- How can ratios be used to describe relationships?
- Where and how are positive and negative numbers used in the real-world.

Essential Understanding:

- Ratios can be used to show the relationship of different quantities of numbers and objects.
- Positive and negative numbers are used in temperature, money, graphs.

Curriculum Standards- DOK noted where applicable with Standards
EE.6.RP.1: Demonstrate a simple ratio relationship. (DOK 1)
EE.6.NS.5-8: Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero). (DOK 1)

LEARNING TARGETS	
Knowledge/Content I Know ...	Skills/Processes I Can ...
- we use a ratio (written as a fraction) to describe the relationship in quantities of numbers and objects. - that a 1 to 1 correspondence is matching one object to another object - that a thermometer is like a number line and it measures temperature. - positive means more than zero and negative mean less than zero. - positive numbers are to the right of zero and negative numbers are to the left of zero on the number line..	- use a ratio to describe a relationship using numbers and objects. - complete a pattern given a simple ratio. - identify a one-to-one relationship. - read a thermometer to find positive and negative temperatures. - balance a monatary transaction to show savings or debt. - recognize that positive and negative numbers are used together to describe real-world situations (temperature above/below zero). - identify that positive numbers are more than zero and negative numbers are less than zero. - use manipulatives to demonstrate understanding of "more than" a given number; and "take away" from a given number so there are zero remaining.

Unit 2: Measurement

Essential Questions:

- How can we use data shown on graphs to make decisions?

Essential Understanding:

- Graphs help us determine how quantities compare.

Curriculum Standards- DOK noted where applicable with Standards

EE.6.SP.1-2: Display data on a graph or table that shows variability in the data. (DOK 2)
EE.6.SP.5: Summarize data distributions shown in graphs or tables. (DOK 2)

LEARNING TARGETS

Knowledge/Content I Know ...	Sk
$\bullet \quad$ variability is how much different the	

Skills/Processes
I Can ... smallest quantity is from the greatest

- display data on a graph or table that shows variability in the data. quantity.
- on a bar graph, the tallest bar represents
- identify which quantity is greatest when the largest quantity.
- on a circle graph, the pie piece that is largest represents the quantity that is greatest.
- increasing means going higher/going up
- decreasing means going lower/going down
- same means no change.
- on a bar graph, the shortest bar represents the smallest quantity.
- the group with the highest number of objects has the most.
- the group with the least number of objects has the fewest.
- the last number said when counting is the three quantities are represented on a bar or
circle graph.
- identify a set that has objects that are the same or different.
- describe the trend lines of data using informal language (e.g., increasing, decreasing, stays the same).
- identify which quantity is smallest or least when three quantities are represented on a bar
or circle graph.
- identify which object or symbol appears most frequently when presented with objects or symbols that are unsorted in a number of objects in the group.

Unit 3: Area/Shape

Essential Questions:

- How do we find area?
- How do we find volume?
- What is the difference between area and volume?

Essential Understanding:

- Area is the space inside a flat object.
- Space can be broken up, rearranged, and the area/volume remains the same.

Curriculum Standards- DOK noted where applicable with Standards

EE.6.G.1: Solve real-world and mathematical problems about area using unit squares. (DOK 1/2)
EE.6.G.2: Solve real-world and mathematical problems about volume using unit cubes. (DOK 1/2)

LEARNING TARGETS	
Knowledge/Content I Know	Skills/Processes
- the last number said when counting the unit squares that fit into the space of a flat object is the area of the rectangle. - area measures the number of unit squares that fit into the space of a flat object. - when comparing objects' area, look for which covers the most space. - how to compare big vs. small; more vs. less - volume can be computed by repeated addition of the number of cubes seen on the face through its depth. - volume measure is the number of unit cubes that fit inside the space of a 3D object. - volume is the amount of space inside an object. - the object with the most space inside a 3D object has the most volume. - 2D is a flat picture with 2 dimensions (L and W) and 3D has 3 dimensions (L, W and added depth).	- solve real-world and mathematical problems involving area using unit squares. - determine the area of a rectangle by counting unit squares. - identify which of two objects has a larger/bigger area. - solve real-world and mathematical problems involving volume using unit cubes. - determine which of 2 objects has a larger volume. - differentiate between an object that has volume (three-dimensional) and an object that does not.

Unit 4: Equations

Essential Questions:

- How do equations help us solve realworld problems.

Essential Understanding:

- Equations are created and solve to make sense of patterns and relationships that exist in the real-world.

Curriculum Standards- DOK noted where applicable with Standards

EE.6.EE.1-2: Identify equivalent number sentences. (DOK 1/2)
EE.6.EE.3: Apply the properties of addition to identify equivalent numerical expressions. (DOK $1 / 2$)
EE.6.EE.5-7: Match an equation to a real-world problem in which variables are used to represent numbers. (DOK 1/2)

LEARNING TARGETS

Knowledge/Content I Know ..	Skills/Processes I Can ...
- strategies to solve equations and compare sides $(3+2=4+1)$. - strategies to solve addition and subtraction problems. - strategies to match the same amount to picture ($3+2=x \times x \times x$). - equal symbol means both sides have the same number ($5=x \times x \times x)$. - strategies to solve problems (5 + \qquad $=$ 7) - strategies to solve addition problems (5+ $2=$ \qquad). - strategies to add/count objects ($\mathrm{x} \times \mathrm{x}+\mathrm{o}$ $0=$). \qquad	- recognize equivalent number sentences. - match a number sentence to a correct picture representation. - identify a quantity that "is the same as" a given quantity of objects. Instructional focus on using both the language of same with symbol (=) paired together. - identify an equation that represents a real-world problem in which the variable represents an addend. Use a box to represent the variable. The real-world problem will use objects or pictures as a guide. - identify an equation that represents a real-world problem in which the variable represents the sum. Use a box to represent the variable. The real world problem will use objects or pictures as a guide. - determine an unknown unit in an equation using objects or pictures.

- How is multiplication related to addition?

Essential Understanding:

- Multiplication is repeated addition and can be computed by skip counting the number of objects in equal groups.

Curriculum Standards- DOK noted where applicable with Standards

EE.6.NS.3: Solve two-factor multiplication problems with products up to 50 using concrete objects and/or a calculator. (DOK 1/2)

LEARNING TARGETS	
Knowledge/Content I Know ...	Skills/Processes I Can ..
- the multiplication facts (skip count by 2s, $5 \mathrm{~s}, 10 \mathrm{~s}$) and repeat addition. - multiplication problems can be represented with arrays with groups of objects arranged in rows and columns. - multiplication means repeatedly adding a number to itself an identified number of times. - multiplication key strokes to operate a calculator. a group is a set of objects.	- The student can solve a simple multiplication problem (one factor times another) using concrete objects and/or a calculator. - The student can solve a simple multiplication problem (one factor times another) with products up to 15 using concrete objects and/or a calculator. - The student can identify a group of a given quantity.

Unit 6: Geometry

Essential Questions:

- How do we compare subsets of a divided whole?

Essential Understanding:

- The more subsets that are created when we divide a whole, the smaller each subset becomes.
- To compare unit fractions, refer to the denominator. The larger the denominator, the smaller the unit fraction.

Curriculum Standards- DOK noted where applicable with Standards

EE.6.NS.1: Compare the relationships between two unit fractions. (DOK 1/2)
EE.6.NS.2: Apply the concept of fair share and equal shares to divide. (DOK 1/2)

LEARNING TARGETS

Knowledge/Content

Skills/Processes

I Can ...

- fractions are equal parts (subsets) that make up a whole.
- to compare unit fractions, compare the size of their denominator
- a unit fraction represents one of the subsets of a whole that is equal in size to the other subsets of the whole.
- the larger the denominator the smaller the pieces ($1 / 4$ is smaller than $1 / 2$).
- that whole means all of or a complete and half is two equal parts of a whole when it is cut.
- when we divide, we divide the whole into equal size subsets.
- that equal shares means they are the same size.
- that a subset is a smaller set of the whole.
- that a set is a group.
- compare the relationship between two unit fractions (a fraction with a numerator of 1 such as $1 / 3,1 / 8$, etc.) no smaller than 1/10.
- identify a shape that is separated into equal
- differentiate between a whole object and half of the object.
- solve a division problem using the concept of equal shares.
- separate sets into equal subsets.
- demonstrate an understanding of equal sets by identifying a set that has been divided into subsets that are "the same".

