Davison Community Schools ADVISORY CURRICULUM COUNCIL
 Phase II, February 13, 2017
 John Kerr, Matt Lobban

7th grade CI - Math

Course Essential Questions (from Phase I report):

- How does mathematics help us in finding patterns and relationships in the real-world?
- How can we use mathematics to solve real-world problems?

Tier 3 Vocabulary Words are highlighted in yellow

Unit 1: Multiplication and Division
 Essential Questions:

- How is multiplication related to addition?
- How is division related to subtraction?

Essential Understanding:

- Multiplication can be found by repeatedly adding groups of equal quantities.
- Division can be thought of as subtracting objects from a set and placing them into a set number of groups determined by the divisor.

Curriculum Standards- DOK noted where applicable with Standards

EE.7.NS.2.a: Solve multiplication problems with products to 100. (DOK I/II)

EE.7.NS.2.b: Solve division problems with divisors up to five and also with a divisor of 10 without remainders. (DOK I/II)

LEARNING TARGETS

Knowledge/Conten

- multiplication can be represented by creating repeated groups of equal number of objects
- calculator key strokes for finding multiplication
- mutliplication relates to skip counting
- double means to replicate twice the amount of a set
- division is related to repeated subtraction in a 1-to-1 correspondance.
- the division symbol means to create equal subsets of a set number of groups.
- when dividing, the divisor is the number of subsets a larger set is divided into.

Skills/Processes

I Can

- solve a simple multiplication problem (one factor times another) using concrete objects or a calculator.
- solve a simple multiplication problem (one factor times another) with products up to 30 using concrete objects and/or a calculator.
- identify double the amount of specified quantity (limited to 1, 2, 3 or 4).
- solve division problems with a divisor of 2, 5 , or 10 or where the dividend is less than 30 using concrete objects or a calculator.
- solve division problems with a divisor of 2,

	or 10 or where the dividend is less than 20 using concrete objects and/or a calculator.
- identify a larger set of up to 10 that has	
been divided into 2 or 3 equal subsets.	

Unit 2: Adding fractions
Essential Questions:

- How do you add fractions?

Essential Understanding:

- To add fractions that have the same denominator, count the total number of equal subsets of the whole.

Curriculum Standards- DOK noted where applicable with Standards

EE.7.NS.1: Add fractions with like denominators (halves, thirds, fourths, and tenths) with sums less than or equal to 1. (DOK I/II)

LEARNING TARGETS	
Knowledge/Content I Know .	Skills/Processes I Can ...
- two halves make up one whole - to add fractions with the same denominator, count the total number of equal subsets of the whole there are.	- add fractions with common denominators with sums less than or equal to 1 . - add fractions with common denominators with sums less than or equal to 1 and limited to halves, thirds, and fourths (fractions shown as models). - identify that the sum of two halves is equal to 1 whole.

Unit 3: Fractions, decimals, and money

Essential Questions:

- How do fractions, decimals and money relate to eachother.

Essential Understanding:

- Money is a great example of how fractions and decimals are used to make sense of number relationships.

Curriculum Standards- DOK noted where applicable with Standards

EE.7.NS.2.c-d: Express a fraction with a denominator of 10 as a decimal. (DOK I/II)
EE.7.NS.3: Compare quantities represented as decimals in real-world examples to tenths. (DOK I/II)

EE.7.EE.1: Use the properties of operations as strategies to demonstrate that expressions are equivalent. (DOK I/II)

EE.7.EE.2: Identify an arithmetic sequence of whole numbers with a whole-number common difference. (DOK I/II)

LEARNING TARGETS

Knowledge/Content I Know

- fractions and decimals can be equivalent.
- 50 cents is half of a dollar.
- 4 quarters is equivalent to a dollar.
- one-half is one of two equal subsets of a whole.
- one-fourth is one-half of one-half.
- what a $\$ 1, \$ 5$, and $\$ 10$ bill looks like.
- the difference the appearance between pennies, nickels, dimes, and quarters.
- equivalence means same.
- a decimal represents part of a whole.
- skip counting sequence using 2's, 5's, and 10's
- counting sequence by 1 's to 100 .

Skills/Processes I Can ...

- express a fraction with a denominator of 10 as a decimal (functional skill is expressing money as a fraction/decimal of a dollar, limited to tenths of a dollar: \$0.10, \$0.20, etc.)
- identify that one-half equals .50 and onefourth equals .25 with models as support. (e.g., model of .50 is the same as onehalf of a dollar.)
- use models to identify the fractions onehalf and one-fourth.
- compare quantities represented as decimals in real-world examples to tenths (e.g., a combination of bills and coins, a discount of 10 percent $=.10$).
- identify a combination of coins and bills up to $\$ 5$ using decimal notation. (e.g., $\$ 2.50$ is equal to two one-dollar bills and two quarters).
- differentiate coins and bills from each

	other and from other similar objects. - use the properties of operations as strategies to demonstrate that expressions are equivalent. - recognize an arithmetic sequence of numbers with and without decimals (e.g., $2,4,6 ; 2.5,4.5,6.5$) with a whole-number common difference. - recognize an arithmetic sequence of whole numbers with and without a model and limited to $2 \mathrm{~s}, 5 \mathrm{~s}$, and 10 s . - recognize the number that comes next in a sequence of numbers to 10 in sequential order with a difference of 1 .

Unit 4: Geometry
Essential Questions:

- How do we classify 2D and 3D shapes?
- What is perimeter?
- What is area?

Essential Understanding:

- Shapes, both 2D and 3D are classified by their shape, number of sides, and number of angles.
- Perimeter is the sum of all of a shapes sides.
- Area is the space inside a shape and is measured by the number of unit squares that fit inside a shape.

Curriculum Standards- DOK noted where applicable with Standards

EE.7.G.1: Match two similar geometric shapes that are proportional in size and in
the same orientation. (DOK I/II)
EE.7.G.2: Recognize geometric shapes with given conditions. (DOK I)
EE.7.G.3: Match a two-dimensional shape with a three-dimensional shape that shares an attribute. (DOK I)
EE.7.G.4: Determine the perimeter of a rectangle by adding the measures of the sides. (DOK I/II)
EE.7.G.6: Determine the area of a rectangle using the formula for length \times width, and confirm the result using tiling or partitioning into unit squares. (DOK I/II)

LEARNING TARGETS

Knowledge/Content
I Know ...

Skills/Processes

I Can ..

- identify two similar two- and threedimensional shapes that are proportional in size and in the same orientation.
- identify two similar two-dimensional shapes or objects that are proportional in size and in the same orientation; limited to square, circle, and triangle. (e.g., a postage stamp and a picture frame).
- match a similar two-dimensional shape with an object that is proportional in size and in the same orientation; limited to round and square (e.g., an analog clock and a coin).
- recognize geometric shapes with specified attributes.
- identify common two-dimensional shapes (e.g., square, circle, triangle, and star).
- differentiate between round/circle and square or sphere and cube.
- match a two-dimensional shape with a

Unit 5: Angles
Essential Questions:

- How can we identify different angles?

Essential Understanding:

- Angles are identified as being acute, obtuse, or right, depending on if they have measures less, greater, or equal to a right angle.

Curriculum Standards- DOK noted where applicable with Standards
EE.7.G.5: Recognize angles that are acute, obtuse, and right. (DOK I)

LEARNING TARGETS	
Knowledge/Content I Know ...	Skills/Processes I Can ...
- what a corner is and can list some shapes that have them - a right angle makes a 90 degree corner. - obtuse angles have a measure greater than a right angle - acute angles have a measure less than a right angle	- recognize an angle as being greater than or less than a right angle when given a model of a right angle. - match an angle to a shape that has the same angle. - differentiate between a shape that has corners and one that does not.

Unit 6: Data - Graphs, tables, and relationships

Essential Questions:

- How can looking at data graphs help us make decisions?

Essential Understanding:

- Graphs provide us with a picture of what the data is saying and helps us see what is going on.

Curriculum Standards- DOK noted where applicable with Standards

EE.7.SP.1-2: Answer a question related to the collected data from an experiment, given a model of data, or from data collected by the student. (DOK I/II)

EE.7.SP.3: Compare two sets of data within a single data display such as a picture graph, line plot, or bar graph. (DOK I/II)

EE.7.SP.5-7: Describe the probability of events occurring as possible or impossible. (DOK I)

LEARNING TARGETS

Knowledge/Content
 I Know

Skills/Processes
I Can ...

- the taller the picture graph the larger the quantity for that category.
- the higher the line plot, the larger the quantity for that category.
- the taller the bar graph, the larger the quantity for that category.
- examples of activities that are likely to happen.
- examples of possible events that occur in the natural environment.
- probability of events occurring can be identified as possible or impossible.
- probabliity is a measure describing the certainty of an event occuring.
- answer a question related to the collected data from an experiment, given a model of data, or from data collected by the student.
- solve problems using data presented within a single data display: tables, bar graphs, circle graphs, tallies, and pictographs, including graphs and charts that have more than one set of data.
- compare sets of data within two similar data displays (2 bar graphs or 2 picture graphs) to determine whether two quantities are the same, more than, or less than.
- identify the quantity of data, limited to 1 , 2, or 3 on a pictograph.
- describe the probability of events occurring as possible or impossible.
- identify possible events that occur in the natural environment (e.g., possible: sun produces warmth; rain results in wet).
- identify when activities are likely to happen (e.g., go to school in the morning, eat lunch

	at noon).

Unit 7: Data - Function Tables

Essential Questions:

- What does it mean to solve an equation?

Essential Understanding:

- Solving an equation means using strategies to determine the value(s) for the variable that would make it true.

Curriculum Standards- DOK noted where applicable with Standards

EE.7.EE.4: Use the concept of equality with models to solve one-step addition and subtraction equations. (DOK II)

LEARNING TARGETS	
Knowledge/Content I Know	Skills/Processes I Can
- a variable (box) represents an unknown value. - an equation is a mathematical sentence that uses symbols and numbers to show equality. - count sequence within 5 - strategies for solving one-step addition equations with the start unknown. - strategies for solving one-step subtraction equations with the start unkown. - strategies for solving one-step addition equations with the result unknown. - strategies for solving one-step subtraction equations with the result unknown.	- solve one-step addition and subtraction equations with an unknown represented with a box. (e.g., box $+5=10$; box $-2=$ $3)$. - solve one-step addition and subtraction equations, where the unknown is the sum or difference. paired with pictures or objects. (e.g., $5+5=$ box; $5-2=$ box) - identify how much is "one more" or when one is "taken away" from a quantity up to 5 with a model.

Unit 8: Ratios

Essential Questions:

- How are ratios used to create a model of a life sized object?

Essential Understanding:

- Ratios are a comparison of similar attributes of a model to a life-size object.

Curriculum Standards- DOK noted where applicable with Standards

EE.7.RP.1-3: Use a ratio to model or describe a relationship. (DOK I/II)

LEARNING TARGETS	
Knowledge/Content I Know ..	Skills/Processes I Can ...
- how a ratio can be used to compare objects of different size. - life size vs. model size - models can be larger or smaller than an object's life size. - a ratio is a comparison of two numbers using a fraction or colon.	- complete a ratio using numbers to describe a relationship. - use a simple ratio to describe a relationship. - recognize a $1: 1$ relationship of a given modeled ratio.

